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Abstract
Objectives Hippocampal characterization is one of the most significant hallmarks of Alzheimer’s disease (AD); rather, the 
single-level feature is insufficient. A comprehensive hippocampal characterization is pivotal for developing a well-performing 
biomarker for AD. To verify whether a comprehensive characterization of hippocampal features of gray matter volume, 
segmentation probability, and radiomics features could better distinguish AD from normal control (NC), and to investigate 
whether the classification decision score could serve as a robust and individualized brain signature.
Methods A total of 3238 participants’ structural MRI from four independent databases were employed to conduct a 3D 
residual attention network (3DRA-Net) to classify NC, mild cognitive impairment (MCI), and AD. The generalization was 
validated under inter-database cross-validation. The neurobiological basis of the classification decision score as a neuro-
imaging biomarker was systematically investigated by association with clinical profiles, as well as longitudinal trajectory 
analysis to reveal AD progression. All image analyses were performed only upon the single modality of T1-weighted MRI.
Results Our study exhibited an outstanding performance (ACC = 91.6%, AUC = 0.95) of the comprehensive characterization 
of hippocampal features in distinguishing AD (n = 282) from NC (n = 603) in Alzheimer’s Disease Neuroimaging Initiative 
cohort, and ACC = 89.2% and AUC = 0.93 under external validation. More importantly, the constructed score was signifi-
cantly correlated with clinical profiles (p < 0.05), and dynamically altered over the AD longitudinal progression, provided 
compelling evidence of a solid neurobiological basis.
Conclusions This systemic study highlights the potential of the comprehensive characterization of hippocampal features 
to provide an individualized, generalizable, and biologically plausible neuroimaging biomarker for early detection of AD.
Key Points 
• The comprehensive characterization of hippocampal features exhibited ACC = 91.6% (AUC = 0.95) in classifying AD from  
   NC under intra-database cross-validation, and ACC = 89.2% (AUC = 0.93) in external validation.
• The constructed classification score was significantly associated with clinical profiles, and dynamically altered over the  
   AD longitudinal progression, which highlighted its potential of being an individualized, generalizable, and biologically  
   plausible neuroimaging biomarker for early detection of AD.
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AUC   Area under the ROC curve
Aβ  β-Amyloid
CDRSB  Clinical dementia rating sum of boxes
CSF  Cerebrospinal fluid
EDSD  European DTI Study on Dementia database
FAQ  Functional assessment questionnaire
FDG  Fluorodeoxyglucose
MCI  Mild cognitive impairment
MMSE  Mini-Mental State Examination
MNI  Montreal Neurological Institute
MRI  Magnetic resonance imaging
NC  Normal control
NFTs  Neurofibrillary tangles
OASIS  Open Access Series of Imaging Studies
PET  Positron emission tomography
PHS  Polygenic hazard score
pMCI  Progressive MCI
P-Tau  Tau phosphorylated at threonine 181
Ravlt  Rey auditory verbal learning test
Res block  Residual block
RF-SSLP  Random forest-semi-supervised label 

propagation
ROC  Receiver operating characteristic
SEN  Sensitivity
sMCI  Stable MCI
SPE  Specificity
VBM  Voxel-based morphometric method

Introduction

Alzheimer’s disease (AD), the most prevalent cause of 
dementia in the elderly, is an irreversible neurodegenerative 
disorder characterized by progressive cognitive impairment 
and functional deterioration [1]. Mild cognitive impairment 
(MCI) is usually considered the prodromal stage for AD 
[2], and the intervention for preclinical AD and MCI is the 
most efficient way to delay the decline of cognition and pro-
gression of AD pathology [3]. Thus, establishing clinically 
available biomarkers that can accurately identify individuals 
with preclinical or early stages of AD is particularly impor-
tant for clinical intervention and precise medicine. However, 
the existing biomarkers are not sufficiently convenient and 
generalizable.

Hippocampal characterization can be served as one of 
the most significant hallmarks of AD [4]. Previous studies 
have achieved high accuracy for distinguishing AD from 
normal controls (NCs) based on the shape or texture fea-
tures of the hippocampus [5, 6]. It is well accepted that 
the hippocampus is a complex system for supporting the 
integration of spatial information and memory encod-
ing [7]. However, the single-level features such as gray 

matter volume is insufficient to characterize hippocam-
pus as a generalizable biomarker. That also explains why 
many studies turn to characterizing the whole brain by 
an interpretable deep learning [8–10]. It is worth noting 
that the deep learning model particularly for the training 
procedure established on the whole brain suffers the com-
putational cost. Therefore, a well-performing neuroimag-
ing biomarker for AD established on deep learning and 
a comprehensive characterization of hippocampal feature 
ensemble is expected.

Abnormal patterns of the hippocampus can be unveiled 
from different perspectives. For instance, the gray matter 
volume which directly characterizes the hippocampal atro-
phy severity is one of the most reliable biomarkers for AD 
[11]. The probability matrix, which is a probabilistic seg-
mentation map produced by the multi-atlas hippocampus 
segmentation method with each value being the probabil-
ity of corresponding voxel belonging to the hippocampus 
[12], has also been validated as a promising predictor of 
AD progression [13]. The hippocampal radiomics features 
have also been proved to be encouraging biomarkers for 
AD, including intensity, shape, and textural features [14]. 
Thus, we hypothesize the biomarker devised by a compre-
hensive characterization of hippocampal feature ensemble 
of gray matter volume, segmentation probability matrix, 
and radiomics might obtain an ideal performance than that 
only with single-level features.

The first aim of this study is to verify whether the 
comprehensive characterization of hippocampal feature 
ensemble could better serve to distinguish AD from NC. 
The second aim is to investigate whether an individual 
classification score could serve as a robust and biologi-
cal neuroimaging biomarker. For this purpose, we first 
proposed a multi-feature ensemble classification model 
with 3D residual attention network (3DRA-Net) based 
on Alzheimer’s Disease Neuroimaging Initiative (ADNI), 
Australian Imaging Biomarkers and Lifestyle Study of 
Aging (AIBL), the European DTI Study on Dementia 
(EDSD), and the Open Access Series of Imaging Stud-
ies (OASIS) cohorts (n = 3238). Then, we investigated 
whether the neuroimaging biomarker derived from the 
classification decision score has a solid neurobiological 
basis by relating it with clinical profiles (e.g., mini-men-
tal state examination (MMSE), apolipoprotein E (APOE) 
genotype, polygenic hazard score (PHS), fluorodeoxy-
glucose (FDG), cerebrospinal fluid (CSF) Aβ, CSF Tau, 
and other clinical measures). At last, the longitudinal tra-
jectory study of distinct measures was further performed 
to evaluate whether this biomarker could dynamically 
change to track the disease progression. The schematic 
illustration of the deep learning–based AD analysis is 
summarized in Fig. 1. Preliminary results of this study 
have been reported in a conference paper [15].
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Materials and methods

Data acquisition

A total of 3238 participants’ structural MRI images includ-
ing baseline T1-weighted scans were obtained from four 
independent cohorts: ADNI (http:// adni. loni. usc. edu), AIBL 
(http:// aibl. csiro. au), the EDSD (http:// neugr id4you. eu), and 
the OASIS (http:// oasis- brains. org) databases (Table 1 and 
Supplementary Materials S01). In the ADNI cohort (1649 
participants), a total of 1267 participants (3006 scans) with 
a mean follow-up period of 4.29 ± 3.46 years were also 
included. It should be noted that the ADNI cohort was 
served as the primary discovery cohort due to its detailed 
clinical information.

Data preprocessing and feature extraction

The gray matter volume of the whole brain for each T1 MRI 
scan was computed via the CAT12 toolkit (http:// dbm. neuro. 

Fig. 1  Schematic illustration of the deep learning–based AD analy-
sis. a Pipeline of the data preprocessing. b Framework of the multi-
view hippocampal features ensemble. c Classification analysis of AD 
and NC under intra-database cross-validation in the ADNI cohort. d 
Inter-database cross-validation in diagnosing AD based on four inde-

pendent cohorts, and prediction of MCI progressing to AD within 
3 years in the ADNI cohort. e Statistical analysis of group differences 
and correlations between the decision score and clinical profiles. f 
Longitudinal trajectory analysis of the decision score, MMSE, and 
ADAS13 scores during the AD progression

Table 1  Demographic summary about the subjects for all the inde-
pendent cohorts

Cohort Group Age (years) Sex (M/F) MMSE

ADNI 
(N = 1649)

NC (603) 73.46 ± 6.16 277/326 29.08 ± 1.10

MCI (764) 72.98 ± 7.68 447/317 27.56 ± 1.81
AD (282) 74.91 ± 7.69 151/131 23.18 ± 2.13
p value  < 0.001  < 0.001  < 0.001

AIBL (N = 412) NC (334) 73.28 ± 5.94 140/194 28.67 ± 1.27
AD (78) 74.33 ± 7.70 33/45 20.59 ± 5.28
p value 0.283 0.950  < 0.001

EDSD (N = 388) NC (230) 68.76 ± 6.14 108/122 28.58 ± 2.97
AD (158) 75.54 ± 8.10 66/92 20.89 ± 5.12
p value  < 0.001 0.072  < 0.001

OASIS 
(N = 789)

NC (599) 67.14 ± 8.72 244/355 29.06 ± 1.22

AD (190) 74.99 ± 7.69 96/94 24.47 ± 4.13
p value  < 0.001 0.018  < 0.001

http://adni.loni.usc.edu
http://aibl.csiro.au
http://neugrid4you.eu
http://oasis-brains.org
http://dbm.neuro.uni-jena.de/cat/
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uni- jena. de/ cat/) [16]. To reduce the computational complexity, 
we defined a bounding box (60 × 48 × 60) to entirely cover the 
hippocampus (Fig. 1a). It should be noted that the size of bound-
ing box was further cut into 62 × 26 × 38 to remove the influence 
of redundant voxels, and then followed by smooth processing.

The segmentation probability matrix (60 × 48 × 60) of the 
hippocampus was obtained based on the Random Forest-
Semi-supervised Label Propagation algorithm [12] after per-
forming N4 correction and linearly aligning all T1 MRI scans 
to the Montreal Neurological Institute space (1 × 1 × 1  mm3) 
with the Advanced Normalization Tools (ANTs) (https:// 
github. com/ ANTsX/ ANTs) [17], selecting 20 most similar 
atlases and non-linearly aligning them to the target image.

The radiomics features (intensity features (n = 14), shape 
features (n = 8), and textural features (n = 33)) for each side 
hippocampus were computed (https:// github. com/ YongL 
iulab) [14] (Supplementary Materials S02).

Individual score from multi‑feature ensemble 
classification model

In this study, a 3DRA-Net was developed to learn the most 
representative features for gray matter volume and probabil-
ity matrix of the bilateral hippocampus (Figs. 1b and 2a). 
Then, an individual score (referred as decision score) was 
generated by integrating outputs of the 3DRA-Net (128 × 4) 
and hippocampal radiomics features (55 × 2) using fully con-
nected layers for the individualized prediction (Fig. 1b).

In the 3DRA-Net, the attention mechanism consisting 
of a trunk branch and a soft mask branch was to guide fea-
ture learning in an end-to-end training fashion (Fig. 2b). 
Moreover, a novel residual block (Res block) was proposed 
and integrated into down-sampling pathway to boost the 
capacity of representation and overcome the gradient disap-
pearance (Fig. 2c). The global average pooling was adopted 
to compress all voxels of single-channel feature map into 
one value to avoid over-fitting.

Due to the imbalance of AD and NC in present study, a 
threshold strategy was combined with the loss function of 
binary cross-entropy to address such issue, which redefine 
the typical 0.5 threshold to a proportion of AD/(AD + NC) 
in the training set. Besides, the proposed 3DRA-Net was 
implemented using the platform of Pytorch (version = 1.7.1), 
which was initialized with He’s initialization [18], and opti-
mized using the optimizer Adam [19] with initial learning 
rate of 3 ×  10−4, weight decay rate of 1 ×  10−4, and mini-
batch size of 8. The dropout rate before the fully connected 
layers was 0.3, and the training time was 70 epochs.

Classification analysis, validation, 
and generalizability

We first constructed the classification model for classify-
ing AD (n = 282) and NCs (n = 603) based on different 
hippocampal features in the ADNI cohort under tenfold 
cross-validation (Fig. 1c). In short, the participants were 

Fig. 2  Architecture of the 3D convolutional neural network. a 3D 
residual attention network. b Residual attention module. The param-
eters r and s in the soft mask branch of the “attention-1,” “attention-2,” 

and “attention-3” modules in the 3DRA-Net are 3/2, 2/1, and 1/0, 
respectively. c Residual block

http://dbm.neuro.uni-jena.de/cat/
https://github.com/ANTsX/ANTs
https://github.com/ANTsX/ANTs
https://github.com/YongLiulab
https://github.com/YongLiulab
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split into training sets (80% of the data), a validating set 
(10% of the data), and a testing set (10% of the data). 
In addition, to further assess the robustness of the clas-
sification model, the inter-database cross-validation with 
leave-center-out strategy was considered based on four 
independent cohorts, including ADNI (603 NCs, and 282 
AD), AIBL (334 NCs, and 78 AD), EDSD (230 NCs, and 
158 AD), and OASIS (599 NCs, and 190 AD) (Fig. 1d). 
Briefly, one independent cohort was being the testing set 
in turn, while the remaining three cohorts were split into 
training sets (90% of the data), and a validating set (10% 
of the data) (Supplementary Materials S03).

Furthermore, to discriminate the progressive MCI 
patients (pMCI) from stable MCI patients (sMCI), the above 
AD/NC classifier trained on ADNI (not training another 
classifier with MCI subjects) was directly employed to pre-
dict whether the MCI progress to AD within 3 years in the 
ADNI cohort (150 pMCI, and 252 sMCI) (Fig. 1d and Sup-
plementary Materials S04). Besides, we also compared the 
AUC of the decision score and other clinical measures in 
predicting MCI convert to AD (58 pMCI, and 138 sMCI) 
(Supplementary Materials S05).

Statistical analysis

To assess the decision score in different groups, a two-sam-
ple two-sided t-test was performed among the NC, sMCI, 
pMCI, and AD groups. As the APOE gene is a significant 
genetic risk factor for AD [20, 21], we further explored the 
difference of decision scores between subjects with APOE 
ε4+ and APOE ε4− in the NC, MCI, and AD groups, 
respectively. Besides, the combined presence of Aβ plaques 
and Tau neurofibrillary tangles (NFTs) is a unique hallmark 
of AD [22]. Thus, the group difference analysis of the deci-
sion scores was also performed among three MCI subgroups 
(Aβ+&Tau+, Aβ+&Tau−/(Aβ−&Tau+), and Aβ−&Tau−) 
(Fig. 1e). Here, Aβ+ was defined when Aβ < 1098 pg/mL, 
and Tau+ was defined when Tau > 242 pg/mL [23, 24].

We also explored the biological basis of the decision 
score by relating it to the clinical measures, such as cognitive 
ability (MMSE, ADAS13, ADAS11, ADASQ4, Ravlt-imme-
diate, Ravlt-learning, CDRSB, and FAQ), CSF biomarker 
(CSF Aβ, and CSF Tau), metabolism (FDG), and genetic 
risk score (PHS). The correlation analysis was performed 
in the MCI and AD groups after controlling for the effects 
of age, gender, and clinical group (Fig. 1e).

Progression trajectory analysis of the individual 
score, MMSE, and ADAS13 changes

Identification of dynamic changes for biomarkers during 
the AD progression is crucial for defining the disease 

stage and monitoring the efficacy of potential treatments 
[25]. To test the overall consistent patterns of longitudi-
nal progression of the proposed biomarker and cognitive 
ability, the longitudinal trajectory analysis of the deci-
sion score, MMSE, and ADAS13 scores was performed 
in the NC, sMCI, pMCI, and AD groups in the ADNI 
cohort (Fig. 1f).

In particular, for the NC, sMCI, and AD subjects, the 
status remained stable until the last visit, and the base-
line was therefore set as the origin of progressing time. 
However, the origin of pMCI subjects was set by the AD 
onset time point; i.e., the “0” point was defined as the time 
when the patient converted to AD. Then, the longitudi-
nal trajectory was derived in each group using both linear 
and second-order non-linear regression models according 
to the decision score, MMSE, and ADAS13 scores of all 
subjects at each time point. The values of the decision 
score, MMSE, and ADAS13 scores were normalized by a 
max–min standardized method across all subjects.

Contribution of the decision score to diagnostic 
and predictive potential

We combined the clinical biomarkers and decision score to 
validate whether it could improve the overall diagnostic and 
predictive performance of AD. In particular, to preserve the 
advantage of the single modality of structural MRI (sMRI), 
a total of 11 indicators were considered, including decision 
score, age, gender, and 8 most easily accessible cognitive 
profiles (MMSE, ADAS13, ADAS11, ADASQ4, Ravlt-
immediate, Ravlt-learning, CDRSB, and FAQ). The decision 
score for all subjects in contribution analysis was obtained 
by the 3DRA-Net under inter-database cross-validation.

The contribution analysis was conducted in two strate-
gies according to study [26]: strategy (1)—the grid search 
algorithm was capitalized to excavate the best feature 
combination via the accuracy of testing set (referred as 
best-model-fit features). Strategy (2)—all the involved 
indicators were combined to evaluate the performance. 
For comparison, the decision score was removed in both 
strategies to assess the contribution of such score to the 
overall diagnostic predictive potential.

Under each strategy, we adopted a linear support vec-
tor machine (SVM) to implement a predictive experiment 
of whether MCI converts to AD within 3 years in the 
ADNI cohort, and a diagnostic experiment of AD and 
NC classification under inter-database cross-validation. 
Since the databases of AIBL, EDSD, and OASIS did not 
provide abundant indicators as ADNI, the decision score 
was only combined with age, gender, and MMSE in the 
classification of AD and NC under inter-database cross-
validation experiment.
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Results

Demographic characteristics 
and neuropsychological assessment

In total, 3238 subjects from four independent cohorts of 
ADNI (n = 1649), AIBL (n = 412), EDSD (n = 388), and 
OASIS (n = 789) were employed (Table 1 and Supple-
mentary Materials S01). The MMSE score was signifi-
cantly different among the NC, MCI, and AD groups in 
ADNI (p < 0.001, ANOVA test). Similarly, a significant 
difference in the MMSE score was also observed between 
the NC and AD groups in AIBL, EDSD, and OASIS 
(p < 0.001, t-test). The detailed clinical information is 
shown in Table 1.

Diagnostic performance

Regarding the classification of AD and NC, the multi-feature 
ensemble classifier yielded an ACC = 91.6% (SPE = 95.4%, 
SEN = 83.2%, AUC = 0.95) in the ADNI cohort, which is 
higher than that only with the single-level hippocampal fea-
tures (Fig. 3a and Table 2). More importantly, we achieved a 

mean classification ACC = 89.2% (SPE = 92.3%, SEN = 80.5%, 
AUC = 0.93) with the comprehensive characterization of hip-
pocampal feature ensemble under inter-database cross-valida-
tion based on four cohorts (Fig. 3b and Table 3).

Regarding the discrimination of pMCI from sMCI with 
baseline data in the ADNI cohort using the above AD/NC 
classifier (not training another classifier with MCI subjects) 
(150 pMCI, and 252 sMCI), the results showed the compre-
hensive characterization of hippocampal feature ensemble 
achieved an ACC = 74.8% (SPE = 80.6%, SEN = 65.1%, 
AUC = 0.79) (Fig. 3c and Supplementary Materials S04).

Besides, the comparison of the clinical measures and deci-
sion score in classifying pMCI and sMCI was also performed 
after excluding those MCI participants without complete clin-
ical measures (mainly lack of the biochemical indicators) in 
the ADNI cohort (58 pMCI, and 138 sMCI). The experimen-
tal results demonstrated that the decision score (AUC = 0.79) 
outperformed other single clinical indicators, particularly for 
the CSF Aβ (AUC = 0.76), CSF Tau (AUC = 0.29), and CSF 
P-Tau (AUC = 0.28) (Supplementary Materials S05).

Comparison with other methods

The classification result of the present method was compared 
to other existing methods, which also employed deep learning 
on the baseline sMRI of whole brain [8–10] or hippocampus 
[27, 28] from ADNI. The results showed the comprehensive 
characterization of hippocampal feature ensemble achieved 
competitive performance (ACC = 91.6%, AUC = 0.95) com-
pared with others (ACC ranging between 79.9 and 92.1%, 
AUC ranging between 0.86 and 0.94) (Supplementary Mate-
rials S06). Although the study [10] achieved the best ACC of 
92.1%, the performance under inter-database cross-validation 
between ADNI and in-house was 86.1–87.0%, which was 
lower than our method (ACC = 89.2%). Of note, the perfor-
mance of different methods [8–10, 27, 28] under comparison 

Fig. 3  ROC curves for the classification performance. a Classification 
of AD and NC with different hippocampal features under intra-database 
cross-validation in the ADNI cohort. b Inter-database cross-validation of 

the 3DRA-Net with multi-view ensemble hippocampal features based 
on four independent cohorts. c Prediction of MCI converting to AD 
within 3 years with different hippocampal features in the ADNI cohort

Table 2  Comparison of different hippocampal features in classify-
ing AD and NC under intra-database cross-validation in the ADNI 
cohort. VBM voxel-based morphometric method

Feature ACC (%) SEN (%) SPE (%) AUC 

Gray matter volume-VBM 89.6 82.9 92.6 0.94
Gray matter volume 89.8 79.3 94.6 0.94
Probability matrix 86.9 76.1 91.8 0.90
Radiomics 88.2 72.9 95.2 0.92
Combination 91.6 83.2 95.4 0.95
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in Supplementary Materials S06 was directly cited from the 
corresponding studies due to the impractical identification of 
the same data from ADNI.

Furthermore, three deep learning models of FCN [9], 3DAN 
[10], and 3DResNet [29] were adopted to compare with the 
proposed 3DRA-Net under the intra- and inter-database cross-
validations (Table 4). It is worth noting that the voxel-based 
morphometric (VBM) method was also involved as a baseline 
comparison method, which was implemented on the gray mat-
ter volume after a t-statistic-based feature selection (top 10,000 
voxels were selected, Supplementary Materials S07) [30, 31].

The result showed that our method exhibited outstanding 
discrimination of AD (ACC = 89.2%, AUC = 0.93) in the 
external validations, which significantly outperformed the 
VBM (ACC = 83.1%, AUC = 0.91), FCN (ACC = 88.5%, 
AUC = 0.92), 3DAN (ACC = 87.2%, AUC = 0.92), and 
3DResNet (ACC = 87.9%, AUC = 0.93) models (Table 4), 
and presented a better generalization. The results of the 
intra-database cross-validation in the ADNI cohort are listed 
in Supplementary Materials S06. Besides, all deep learning 
models under comparison achieved a high ACC (> 87% for 
all) with the external validation, further demonstrating the 
superiority of the comprehensive characterization of hip-
pocampal feature ensemble in classifying AD and NC.

Associations between the decision score and clinical 
measures

In ADNI cohort, the significant difference was observed 
among NC, sMCI, pMCI, and AD groups (p < 0.001) 
(Fig. 4a). Besides, a significant difference between the indi-
viduals with or without APOE ε4+ in the MCI group was 

also obtained (p < 0.001) (Fig. 4b). Likewise, we also found 
a significant difference in the decision scores among three 
MCI subgroups (Aβ+&Tau+, Aβ+&Tau−/(Aβ−&Tau+), 
and Aβ−&Tau−) (p < 0.001) (Fig. 4c). The quantitative 
results are in Supplementary Materials S08.

Furthermore, Pearson’s correlation exhibited that the 
decision score was significantly correlated with clinical 
measures (including MMSE, ADAS13, ADAS11, ADASQ4, 
Ravlt-immediate, Ravlt-learning, CDRSB, FAQ, FDG, CSF 
Aβ, and PHS in Fig. 5(a–k)) with all p values < 0.001 except 
CSF Tau. The correlation analysis conducted solely in the 
MCI or AD group are in Supplementary Materials S09.

Group progress trajectories of the decision score, 
MMSE, and ADAS13

The MMSE and ADAS13 scores have been widely used to 
monitor the AD progression [25, 32, 33]. Herein, we also 
compared the longitudinal progression of the decision score 
to MMSE/ADAS13.

As shown in Fig. 6, the decision score remained relatively 
stable in the NC or sMCI group. However, the progressing 
trajectory of decision score gradually declined over time in 
the pMCI group (the lower the value, the higher the risk), 
which showed a high consistency with that of the MMSE 
(downward trend) and ADAS13 (upward trend) scores. 
Moreover, the second-order non-linear regression experi-
ments also exhibited the same tendency between the deci-
sion score and MMSE/ADAS13 (Fig. S5 in Supplementary 
Materials S10), highlighting that the proposed neuroimaging 
marker was sensitive in delineating AD neurodegeneration. 
At last, Pearson’s correlation also suggested the decision 
score was significantly correlated with MMSE/ADAS13 in 
the longitudinal trajectory for each clinical group (p < 0.01, 
Supplementary Materials S10), which statistically indicated 
the high trajectory consistency of longitudinal progression 
of AD between the decision score and cognitive ability.

Contribution of the individual score to the clinical 
biomarkers

In the contribution analysis (Table  5), the strategy (1) 
suggested that if the decision score was removed from 

Table 3  Classification 
performance of the 3DRA-
Net with comprehensive 
characterization of hippocampal 
feature ensemble under inter-
database cross-validation

Training set Testing set ACC (%) SEN (%) SPE (%) AUC 

AIBL + EDSD + OASIS ADNI 88.4 81.9 91.4 0.93
ADNI + EDSD + OASIS AIBL 89.8 82.1 91.6 0.93
ADNI + AIBL + EDSD OASIS 89.4 74.4 94.2 0.92
ADNI + AIBL + OASIS EDSD 88.7 83.5 92.2 0.94
Average 89.2 80.5 92.3 0.93

Table 4  Comparison of the 3DRA-Net with other models in classify-
ing AD and NC with comprehensive characterization of hippocampal 
feature ensemble under inter-database cross-validation

Method ACC (%) SEN (%) SPE (%) AUC 

VBM 83.1 78.4 84.6 0.91
FCN 88.5 74.7 94.4 0.92
3DAN 87.2 75.4 92.4 0.92
ResNet 87.9 71.8 94.2 0.93
3DRA-Net 89.2 80.5 92.3 0.93
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the best-model-fit features, the diagnostic and predictive 
accuracy would decrease by around 3%, and the sensitiv-
ity decreased by around 9–12%. Moreover, the strategy (2) 
suggested that the diagnostic and predictive accuracy would 
decrease by around 1–4%, and the sensitivity decreased by 
around 4–14% when the decision score was removed from 
all the involved indicators. In summary, these outcomes 
demonstrated that the decision score significantly contrib-
uted to the overall diagnostic predictive potential of AD.

Discussion

This study demonstrated that the comprehensive characteri-
zation of hippocampal feature ensemble could serve as robust 
and biological neuroimaging biomarkers for AD using intra- 
and inter-database cross-validations with deep learning tech-
niques across four cohorts (ADNI, AIBL, EDSD, and OASIS 
(n = 3238)). Further, the association analyses between the 
constructed decision score and clinical profiles (e.g., APOE, 
CSF Aβ, and cognitive ability), as well as the longitudinal 
trajectory study of different measures during the AD progres-
sion, provided compelling evidence of a solid neurobiologi-
cal basis. These findings highlight that our approach holds 
the potential to substantially drive early detection, progres-
sion monitoring, and therapeutic intervention for AD.

The establishment of valid biomarkers provides a strong 
endorsement in facilitating individual-specific therapies for 
AD. The present study integrated hippocampal gray mat-
ter volume, probability matrix, and radiomics features into 
an individual biomarker, which significantly improved the 
diagnostic reliability of AD. In our study, the gray matter 
volume achieved the best diagnosis among the classification 

models based on the single-level features. It should be noted 
that this result only indicated that the performance of the 
hippocampal volume was better than radiomics features and 
probability matrix in late-stage AD. Convergence studies 
also highlighted that high-order features, e.g., radiomics fea-
tures, might obtain ideal performance in investigating the 
early stage of AD than gray matter volume [14, 34–37]. It 
is why we comprehensively combined the multi-view hip-
pocampal features for the classification of AD and NC.

Generalization is the cornerstone of biomarkers being 
applied in distinct clinical environments [38]. The inter-
nal cross-validation based on a single cohort is limited by 
smaller sample sizes, causing the low robustness to another 
independent dataset [10, 39]. As such, externally validating 
models is central to ensure the generalizability in transla-
tional neuroimaging. Importantly, our approach achieved a 
satisfactory accuracy of 89.2% within external cross-vali-
dation, although the heterogeneity among the cohorts was 
significant regarding their MRI protocols, inclusion criteria, 
and clinical study methods, further highlighting its strong 
generalizability in dealing with independent datasets.

Systematic analyses for the association between the pro-
posed marker and clinical profiles grounded our computa-
tional predictions in the biological evidence. The individual 
biomarker derived from the deep learning framework was 
significantly different between the sMCI and pMCI groups, 
which suggests this biomarker is very sensitive in preclini-
cal AD. The APOE ε4 allele is the most vital genetic factor 
causing AD risk [20, 21]. As expected, the decision score 
was significantly different between APOE ε4+ and APOE 
ε4− in the MCI subjects. In a word, this biomarker has a 
genetic basis. Aβ plaques and Tau NFTs are pathological 
hallmarks of AD [40–42], and the significant difference in 

Fig. 4  Statistical analysis results of group differences in the ADNI 
cohort. a The decision score of subjects in the NC, sMCI, pMCI, and 
AD groups. b The decision score of subjects with or without APOE 

ε4+ in the NC, MCI, and AD groups. c The decision score of subjects 
with Aβ−&Tau−, Aβ+&Tau−/(Aβ−&Tau+), or Aβ+&Tau+in the 
MCI group. N.S., not significant
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decision scores was observed among three MCI subgroups 
divided by CSF Aβ and CSF Tau, further revealing the 
solid biological substrate of the proposed biomarker. On 
the other hand, the decision score was significantly cor-
related with cognition, Aβ, FDG, and PHS, except for CSF 
Tau. It is well accepted that the Aβ is a specific biomarker 
for AD, rather than Tau. Previous studies also suggested 
that the isolated Tau pathway cannot trigger neurodegen-
eration in the brain, which might not be significantly asso-
ciated with hippocampal features. Thus, this study also sup-
ports the point that the Tau deposition alone rarely leads to 
dementia without coexisting pathology [43].

Dynamic changes of biomarkers with the disease pro-
gressing are vitally important for monitoring the natural 

progression of AD. The identified alteration pattern of the 
decision score was highly consistent with that of neuropsy-
chological evaluation, highlighting the sensitive tracking of 
disease progression, and the feasibility of being a similarity 
metric of abnormal hippocampal patterns concerning the 
AD neurodegeneration [44]. Moreover, as for the reflected 
dementia-like patterns, the decision score may be useful to 
stratify the staging along the AD spectrum to capture a bet-
ter time window for severity-specific treatments [25, 44]. 
Thus, this work provided a solid foundation for translating 
neuroimaging into individual precise medicine.

Working with multiple complicated modalities indeed 
enhances the diagnostic performance for AD (e.g., PET 
scans and CSF measures) [9, 45–48], which however made 

Fig. 5  Statistical analysis results of correlations between decision 
score and clinical profiles in the MCI and AD groups in the ADNI 
cohort. The clinical measures included MMSE (a), ADAS13 (b), 
ADAS11 (c), ADASQ4 (d), Ravlt-immediate (e), Ravlt-learning 
(f), CDRSB (g), FAQ (h), FDG (i), CSF Aβ (j), PHS (k), and CSF 

Tau (l). Note: The values of the clinical measures were plotted after 
regressing out the effects of age, gender, and clinical group. The deci-
sion scores of all subjects from ADNI were obtained by the classifica-
tion model of AD and NC when ADNI as the testing set, and AIBL, 
EDSD, and OASIS as the training set
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Fig. 6  Longitudinal trajectory analysis of different measures during 
the AD progression in the ADNI cohort. a Progress trajectory of the 
proposed decision score. b  Progress trajectory of the MMSE score. 
c Progress trajectory of the ADAS13 score. Note: The progress time 
for each group was strictly aligned, and one time point was joined 

at an interval of 12 months if the data of this follow-up for one sub-
ject existed. The values of the decision score, MMSE, and ADAS13 
scores were normalized by a max–min standardized method across all 
subjects. The gray dashed line in the trajectory of pMCI subjects rep-
resents the AD onset time point

Table 5  Contribution of the decision score to the overall diagnosis 
and prediction of AD combining with other easily-accessible clini-
cal indicators evaluated by a linear support vector machine (SVM). 
Strategy (1): the grid search algorithm was capitalized to excavate 
the best feature combination via the accuracy of testing set (referred 

as best-model-fit features). Strategy (2): all involved indicators were 
combined to evaluate the performance. For comparison, the decision 
score was removed in both strategies to assess the contribution of 
such score to the overall diagnostic predictive potential

Task Feature ACC (%) SEN (%) SPE (%) AUC 

Strategy (1) pMCI vs. sMCI
Internal validation

Best-model-fit features 83.0 74.5 88.1 0.90
Best-model-fit minus decision score 80.3 65.8 88.9 0.88

AD vs. NC
External validation

Best-model-fit features 94.8 86.9 97.6 0.97
Best-model-fit Minus Decision score 91.5 75.1 97.8 0.96

Strategy (2) pMCI vs. sMCI
Internal validation

All 11 indicators 82.3 71.8 88.5 0.90
All 11 indicators minus decision score 81.3 67.8 89.3 0.88

AD vs. NC
External validation

All 4 indicators 94.6 86.5 97.6 0.97
All 4 indicators minus decision score 90.6 72.2 97.9 0.96
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the data acquisition more laborious and costly, and prob-
ably cause a reduction of generalization because of certain 
inaccessible modalities in most of hospitals. For instance, 
the PET scanning is a lengthy travel with invasive and 
expensive, which tremendously increases patient burdens 
and limits its universality; the extraction of CSF is very 
intractable due to the invasive lumbar puncture that usu-
ally causes side effects and requires hospitalization. Of 
note, our work built only upon structural MRI to accu-
rately assess AD status within a non-invasive, easily acces-
sible, and cost-effective manner [49–51]. Nevertheless, it 
is of interest in future studies to determine whether the 
currently presented well-defined patterns could be identi-
fied from the other neuroimaging scans.

There are several limitations worthy of being consid-
ered in present study. First, the involved public materials 
were centrally selected, yet the effectiveness and general-
izability of our method should be further verified on “real-
world” data for higher clinical applicability. Second, the 
performance was greatly influenced by the unbalanced 
data in each cohort where the NC is more than AD, which 
may bring on the poor sensitivity to an extent, although 
we also devised a threshold strategy to address such imbal-
ance. Third, despite the versatility of T1 MRI and its veri-
fied performance in AD analysis, one simple MR imaging 
modality is still limited. Fourth, whether the comprehen-
sive hippocampal characterization could stand the position 
of biomarker for AD in presence of other neurodegenera-
tive diseases needs to be further investigated in a more 
diverse data.

Collectively, we developed a neuroimaging biomarker 
to delineate the neurodegeneration for AD with a com-
prehensive characterization of hippocampal feature 
ensemble, including gray matter volume, probability 
matrix, and radiomics features. Further, we validated its 
strong generalization, solid biological basis, and dynamic 
longitudinal alterations based on 3238 participants from 
ADNI, AIBL, EDSD, and OASIS cohorts. Study find-
ings suggest that the comprehensive characterization of 
hippocampal feature ensemble is better to provide an 
individualized, generalizable, and biologically plausible 
neuroimaging biomarker for AD with promising pros-
pects for clinical applications.
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